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3 SYSTEM AND METHOD FOR FEATURE SET REDUCTION

4

5 STATEMENT OF GOVERNMENT INTEREST

6 The invention described herein may be manufactured and used

7 by or for the Government of the United States of America for

8 governmental purposes without the payment of any royalties

9 thereon or therefor.

10

11 BACKGROUND OF THE INVENTION

12 (1) Field of the Invention

13 The present invention relates to a system and method for

14 feature reduction and interpretation for pattern recognition

15 systems. More specifically, the invention provides a system for

16 ranking features in order of importance and for selecting the

17 features that are important for classification.

18 (2) Description of the Prior Art

19 The use of automatic pattern recognition systems for rapid

20 identification and analysis of patterns in input data and for

21 accurate classification of input patterns into one of several

22 predetermined classes is well known in the art. Feature based

23 pattern recognition systems typically use an array of values or

24 measurements defining properties of the input pattern called a

25 feature vector. An input feature vector is compared to a

26 reference set of feature vectors representing the known classes
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1ý! to determine which of the known class feature vectors has the

2i highest similarity to the input feature vector.

3 When the different event classes have known unique

4, measurable characteristics and features, the classification

5 problem is straightforward. However, for many applications the

6 characteristics of the classes and features that separate'the

7 classes are unknown and the feature set designer must determine

8 the features that capture the class differences. This set of

9 available features is the feature set. Selecting the proper

10 feature set is necessary to obtain the most robust classification

11 performance.

12 Poor feature sets cause a number of difficulties for

13 automatic classification. The use of too few features results in

14 poor classification accuracy. However, using too many features

15 also decreases overall classification accuracy. This counter-

16 intuitive "performance peaking" phenomenon is due to the "curse

17 of dimensionality," and affects all classifiers, whether neural

18 network or classical. Thus, feature reduction, identifying and

19 removing features that do not enhance classification performance,

20 plays an important part in feature set design. Superfluous

21 features contribute "opportunities" for misclassification and

22 should be eliminated to improve system robustness. Furthermore,

23 the complexity and cost of feature measurement systems and

24 pattern recognition systems are directly related to the number of

25 computed features. Consequently, from both a performance and

26 economic perspective, it is important to have effective feature

27 reduction algorithms.

2



Furthermore, in some applications the pattern recognition

2i systems used exhibit large variations in performance due to

3i differences in input systems, measurement system performance, and

4 the environment (changing noise, light, temperature). Feature

5 sets that work well in one environment may fail miserably in

6 another and cannot form the basis for a robust classification

7 system. Recognition systems used in changing environments or

8 with changing collection mechanisms often require adaptive, in

9 situ, selection of features from a global feature set. Given a

10 list of features that are known to be useful in certain

11 situations, adaptive feature selection from the list of features

12 is indistinguishable from feature reduction as it is used in this

13 application. Clearly, feature reduction algorithms must be

14 computationally fast if adaptive feature selection is to be

15 undertaken in situ.

16 Although several feature reduction techniques have been

17 developed, they generally suffer from one or more disadvantages

18 which limit their use in many applications. For example, a

19 direct algorithm for obtaining the feature set with the lowest

20 classification error rate (the optimal feature set) is the

21 exhaustive combination method (ECM). ECM examines all possible

22 combinations of features to find the best feature set. Although

23 systems employing ECM will obtain the optimal feature set, they

24 are computationally complex and clearly impractical for most

25 applications unless the number of features is small because the

26 number of possible combinations grows exponentially with the

27 number of features. For example, finding the optimal feature set
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i~ from a set of 35 features requires examining 2 3.4 x 10

2ý1 feature sets, while a set of 70 features requires examining 270

213: 1.2 x 10 feature sets.

4ýý Another technique, single feature classification performance

5 ordering (SFCPO), linearly orders individual features by

6 classification performance when each feature is used alone. This

7 ordering is easily thresholded for various purposes, including

8 feature reduction. SFCPO is good at optimizing classification

9 performance, and it is not limited by severe computational

10 complexity or overhead. However, SFCPO does not provide any

11 intuitive interpretations that facilitate understanding of or

12 provide insight to the reduction or classification problem.

13i Another commonly used method of feature reduction is

1 4.i attributed to R. A. Fisher. Fisher's method derives a new set of

15 features that are linear combinations of the original features.

16 The span of these newly derived features is called the multiclass

17 Fisher projection space (FPS). The FPS maximally separates the

18 class means relative to the class variances. This geometric

19 interpretation greatly facilitates intuition and strongly

20 indicates that the FPS is a good space for feature reduction.

21 Additionally, if the-classes are linearly separable in the FPS,

22 Fisher's linear discriminator, defined on the FPS, can be used

23 for classification. However, the use of the FPS does not

24 guarantee linear separability.

25 Although Fisher's method is computationally fast, it does

26 not linearly order the individual features in terms of their

4
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11 relative importance to classification. Additionally, the FPS is

2: unlikely to contain any of the original features in its span, and

3ý thus, features that have natural interpretations may not be

4 readily interpreted if they have been modified.

5 Thus, what is needed is a system for feature reduction that

6 linearly ranks features in terms of their importance to

7 classification based on the original features relationship to the

8 FPS. Such a system would provide intuitive interpretations that

9 facilitate problem understanding and insight while maintaining

10 the natural interpretation of the original features.

11

12 SUMMARY OF THE INVENTION

13 Accordingly, it is a general purpose and object of the

14 present invention to provide a system and method for linearly

15 ranking features in order of importance.

16 Another object of the present invention is the provision of

17 a system and method for feature reduction.

18 A further object of the present invention is to provide a

19 feature ranking and reduction system that supports adaptive

20 optimization of an automatic classification system.

21 Yet another object of the present invention is to provide a

22 system for feature ranking and/or reduction which does not call

23 for relatively complex and/or extensive computations or

24 relatively large storage requirements.

25 Yet a further object of the present invention is the

26 provision of a system and method for feature ranking and/or

27 reduction which preserves the natural interpretation of the
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• lij original features and supports intuitive interpretations

21 facilitating problem understanding and insight.

3 Still another object of the present invention is the

4 provision of a system and method for feature ranking and/or

5 reduction that reconciles multiple feature rankings.

6 These and other objects made apparent hereinafter are

7 accomplished with the present invention by providing a system for

8 ranking features by exploiting their relationship to the Fisher

9 projection space. The system ranks the n features in a feature

10 set using a set of exemplars wherein each exemplar corresponds to

11 one of the M event classes of an associated feature-based

12 classification system. The system uses a feature extractor to

13 produce an n-element feature vector for each exemplar and build a

14 design set comprising the n-element feature vectors. A training

15 set compiler creates a training set by randomly sampling feature

16 vectors from the design set. A projection space processor then

17 generates the smoothed Fisher projection space (SFPS) for the

18 training set. A feature ranking processor uses the (SFPS) to

19 generate a Procrustes angle for each feature in said feature set

20 and linearly rank the features by numerical size of their

21 respective Procrustes angles. A feature reduction processor

22 eliminates features which are not important for classification

23 based on the linear ranking of the features.
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1 BRIEF DESCRIPTION OF THE DRAWINGS

2 FIG. 1 is a diagram of the functional units of a system for

3 feature ranking and reduction in accordance with the present

4 invention;

5 FIG. 2 is a block diagram illustrating a system for feature

6 ranking and reduction in accordance with the present invention;

7 FIG. 3 illustrates a sample performance evaluation plot for

8 a feature set ranked in accordance with the present invention;

9 FIG. 4A graphically represents a ranking count for each

10 feature in the feature set; and

11 FIG. 4B graphically illustrates a thresholded ranking count

12 for the ranking count of FIG. 4A.

13

14 DESCRIPTION OF THE PREFERRED EMBODIMENT

15 In the embodiments described herein, the method for feature

16 ranking and reduction in accordance with the present invention

17 will be referred to as "Procrustes ordering." In a Procrustes

18 ordering method, individual features are ranked by exploiting

19 their relationship to the Fisher projection space (FPS). The

20 maximal separation property of the FPS provides a good reduced

21 feature space for nonlinear classification problems. However,

22 the FPS is derived from linear combinations of the original

23 features and is unlikely to contain any of the original features

24 in its span. Procrustes ordering maintains the original features

25 by choosing a subset of the original feature set that best

26 approximates (in the least squares sense) the FPS. As will be

27 readily apparent to those skilled in the art, Procrustes orderingý
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1ý is data based and can be used in conjunction with any feature-

21 based classification pattern recognition method or system.

3 1However, Procrustes ordering requires that the classification

4 system have M Ž 1 event classes and that the feature set

5 comprise n Ž 2 features.

6 Referring now to FIG. 1, there is shown a diagram

7 illustrating the functional units of a system for ranking

8 features in order of importance and for selecting the optimal

9 feature set in accordance with the present invention. The system

10 operates on the feature set and a set of sample input patterns

11 (exemplars) to produce a reduced feature set. The reduced

12 feature set is the subset of the original feature set that

13 provides the most robust classification performance. The

14 features (real-valued functions of the data defined to measure

15 class specific properties) comprising the feature set can be

16 defined using any conventional method that is consistent with the

17 classification pattern recognition system for which the feature

18 set is designed.

19 In FIG. 1, a feature extraction processor 10 operates to

20 compile and collect the data necessary for Procrustes ordering.

21 Feature extraction ptocessor 10 acquires exemplars (samples) for

22 each event class and extracts a feature vector from each of the

23 exemplars. The feature vectors are compiled into a design set.

24 Each feature vector comprises n feature values, one for each of

25 the n features in the feature set.
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1i Training/evaluation set compiler 20 creates a training set

2;! and, optionally, an evaluation set by sampling the design set

31! compiled by feature extraction processor 10. A projection space

41 processor 30 produces a reduced feature space that is a subset of

5 the original n-dimensional feature space. The reduced feature

6 space can be generated using several known methods such as

7 principal component analysis, factor analysis, Fisher's method,

8 or the like. Similarly, a variation of Fisher's method (referred

9 to herein as "Smoothed Fisher") in which the sample means and the

10 within-class sample covariance matrix of Fisher's method are

11 replaced with mean vectors and covariance matrices derived from

12 event class probability density function estimates can be used to

13 derive a reduced feature space (referred to herein as "Smoothed

14 Fisher Projection Space" (SFPS)) from the training set.

15 Feature ranking processor 40 calculates the Procrustes

16 angle, the angle between a given feature and the reduced feature

17 space, for each feature in the feature set. Processor 40 then

18 generates a Procrustes ranking by ordering the features by

19 increasing numerical size of their Procrustes angles. An

20 optional classification performance evaluator 50 evaluates the

21 performance of the classification system under the Procrustes

22 ranking using the evaluation set built by compiler 20. However,

23 classification performance evaluator 50 has a broken line in FIG.

24 1 because the evaluator is an optional element of the present

25 invention and be omitted if a desired application does not

26 require its use.

9



i I counter 60 counts the number of ranking trials performed to

2: ensure that a sufficient number of ranking trials have been

3' performed to satisfy a confidence interval criteria. A trial is

4: defined as a ranking of features by feature ranking processor 40

5 for a single training set.

6 Feature reduction processor 70 operates on the feature

7 ranking(s) derived by Procrustes feature ranking processor 40 to

8 select the subset of features that are important for

9 classification (the Procrustes reduced feature set). Feature

10 reduction processor 70 combines the Procrustes rankings from

11 processor 40 and generates a Procrustes reduced feature set by

12 identifying the subset of features that are consistently highly

13 ranked. Alternatively, a reduced feature set can be created by

14 eliminating those features having a Procrustes angle greater than

15 a threshold (decision confidence) angle.

16 The present invention is shown more particularly in FIG. 2,

17 in which is shown a block diagram illustrating a system for

18 feature ranking and reduction in accordance with the present

19 invention. In FIG. 2, feature extraction processor 10 acquires

20 the feature set to be reduced and a set of exemplars for the

21 different event classes. Preferably, the exemplars are obtained

22 from the measurement system (not shown) of the automatic pattern

23 classification system.

24 The measurement system provides a means for sampling the

25 input data to be classified and converting the data into a form

26 for further processing. For example, in a recognition system fori

27 classifying acoustic signals, the measurement system (e.g.,

10



1l transducer array and acoustic signal processor) receives the

2!' acoustic signal and converts it into a digital representation of

3 the signal. In such a system, the features used to define event

4 classes may include frequency, signal to noise ratio, coherence,

5 beam pattern, beam width, array gain, pulse length, or noise

6 spectral density. Similarly, in a character recognition system,

7 the measurement system, which can be a digital scanner, images

8 the unknown (input) characters and stores the image in a digital

9 format.

10 Feature extraction processor 10 is programmed to extract an

11 n-element feature vector from each of the exemplars received.

12 The n1 feature values of the feature vector are generated

13 according to the features defined within the feature set.

14 Feature extraction processor 10 compiles the feature vectors into

15 a design set stored in storage unit 12. Storage unit 12 which

16 can be random access memory, a magnetic storage device, or the

17 like is a shared storage device accessible to both feature

18 extraction processor 10 and training/evaluation set compiler 20.

19 In a preferred embodiment, feature extraction processor 10

20 builds a labeled design set (the event class for each exemplar is

21 known) having at least two exemplars for each event class.

22 Building a labeled design set permits evaluation of individual

23 Procrustes ranking trials and comparison of reduced feature sets.

24 Additionally, having at least two exemplars for each event class

25 enables disjoint training and evaluation sets to be built.

I, 11



1 After feature extraction processor 10 produces a feature

2: vector for each of the exemplars, the processor supplies a

3.; control signal to training/evaluation set compiler 20. When

4 training/evaluation set compiler 20 receives the control signal

5 from feature extraction processor 10, compiler 20 builds a

6 training set and, optionally, an evaluation set by sampling the

7 exemplars in the design set compiled by feature processor 10.

8 Compiler 20 builds an evaluation set if the performance of the

9 Procrustes ranking for that training set will be evaluated by

10 performance evaluator 50.

11 In a preferred embodiment, the design set is labeled and the

12 training and evaluation sets are created by uniformly randomly

13 sampling a subset of the exemplars from each of the event classes

14 to create disjoint training and evaluation sets. The training

15 and evaluation sets should contain at least one exemplar from

16 each of the event classes. If the design set is not labeled, a

17 training set is compiled by sampling the entire design set.

18 After compiling the training set and, if necessary, the

19 evaluation set, compiler 20 notifies projection space processor

20 30 that a training set has been built.

21 Projection space processor 30 comprises a probability

22 density function (PDF) generator 32, a covariance matrix

23 generator 34, and an eigenvector generator 36. Preferably,

24 processor 30 produces a reduced feature space by deriving a

25 Smoothed Fisher Projection Space (SFPS) for the training set

26 built by compiler 20. The SFPS is based on a variation of

27 Fisher's method, a well known feature reduction method attributed

12



to R. A. Fisher. Fisher's method derives a new set of features

21 that are linear combinations of the original features. The span

3i of these derived features is defined as the multiclass Fisher

4 projection space. The FPS maximally separates the class means

5 relative to the class variances. This geometric interpretation

6 facilitates intuition and the maximal separation property of the

7 FPS suggests that it is a good reduced feature space for

8 nonlinear classification problems. A detailed description of

9 Fisher's method can be found in R. 0. Duda and P. E. Hart, PATTERN

10 CLASSIFICATION AND SCENE ANALYSIS, (Wiley & Sons 1973) pp. 114-123

11 incorporated herein by reference.

12 The usual formulation of Fisher's method uses sample means

13 for each class and a (pooled) within-class sample covariance

14 matrix. To derive a SFPS, a probability density function (PDF)

15 is estimated for each of the event classes using the feature

16 vectors compiled in the training set. Expressions for mean

17 vectors and covariance matrices of these estimated class PDFs are

18 then used in Fisher's method to define a SFPS. The SFPS is

19 preferred over the FPS because smoothing the.feature vectors in

20 the manner described reduces the effects of outliers on the SFPS.

21 PDF generator 32generates an estimated PDF for each of the

22 event classes using the feature vectors from the training set

23 built by compiler 20. Any valid PDF estimation technique can be

24 used to obtain the estimated PDFs. In a preferred embodiment,

25 PDF generator 32 is programmed to generate the PDFs by estimating,

26 the unknown PDFs as a mixture of Gaussian PDFs. This generation

27 technique is preferred because it is applicable both for event

13



i1 classes that are well represented and those that are poorly

2 represented. A detailed discussion of this estimation technique

3 can be found in R.L. Streit and T.E. Luginbuhl, Maximum

4 Likelihood Training of Probablistic Neural Networks, IEEE

5 Transactions on Neural Networks, vol. 5, no. 5, September 1994,

6 pp. 764-783, incorporated herein by reference.

7 It should be noted that the above technique uses a

8 homoscedastic mixture (that is, common covariance for all mixture

9 components) of Gaussian PDFs to estimate the unknown class PDFs.

10 However, if there is enough data in the training set to estimate

11 class specific covariance matrices, the above technique can be

12 extended to use a heteroscedastic mixture (that is, different

13 covariance matrices for each component in each class).

14 Additionally, it should be noted that when an unlabeled

15 training set is used, an overall likelihood function is estimated

16 rather than estimating PDFs for each of the event classes. The

17 overall PDF can be estimated using common clustering techniques.

18 After the estimated PDFs are generated, covariance matrix

19 generator 34 generates the within-class scatter matrix, E,, and

20 the between-class scatter matrix, Xb, using the estimated PDFs

21 generated by PDF generator 32. If pj(X)denotes the estimated PDF

22 for the jth class, covariance matrix generator 34 can be

23 programmed to generate the within-class scatter matrix, Y, and

24 the between-class scatter matrix, Xb, using the known general

25 formulas:

Ii 14



M

J00

1il = Zc jfI(X - j)(X- j)t pj(X)dX (1)
j=1

2. and

M

3 = cc jLf(X- t)(X - )tpj(X)dX (2)
j=l

4 where i is the mean of the estimated PDF, pj(X), for class j and

5 is given by

6 =I fXpj(X)dX ( (3)

7 and v' is the global mean defined by

M
8 z =aj Xpj(X)dX. (4)

j=l

9 In the equations, ctj represents the mixing proportion of the

10 mixture associated with class j, superscript t denotes the

11 vector/matrix transpose, and X represents the feature vector.

12 Having obtained the smoothed mean vectors and covariance

13 matrices, the SFPS can be defined. By Fisher's method,

14 maximizing the between-class to within-class scatter matrices

15 requires maximizing the Rayleigh quotient given by

16 i(w) Wt bw (5)

17 where w E Rn (Rn denoting the n-dimensional set of real numbers).

18 Maximizing J(w) is equivalent to solving the generalized

19 eigenvalue problem

15



-1 bW = y-,w (6)

2 : where X and w denote the eigenvalue and the eigenvectors in the

3 1 generalized eigenvalue problem of equation (6).

4 Eigenvector generator 36 uses the within-class scatter

5 matrix, Yw, and the between-class scatter matrix, Xb, generated

6 by covariance matrix generator 34 to generate the eigenvectors

7 that define the SFPS. In a preferred embodiment eigenvector

8 generator 36 is programmed to generate the eigenvectors defining

9 the SFPS by forming the Cholesky decomposition of E, given by

10 Y-,=, LLt  (7)

11 where L is a lower triangular matrix and superscript t denotes

12 the vector/matrix transpose. Substituting the Cholesky

13 decomposition into equation (6) gives

14 YbW = XLtw (8)

15 which expands to

16 Ybn- (•wW): = L(L!w) . (9)

17 By defining y = L• (i.e., forward transform or rotation of the

18 original eigenvectors) and C : L'-iE , equation (9) reduces to

19 familiar eigenproblemi given by

20 Cy =Xy. (10)

21 From equation (10) the singular value decomposition of C, C

22 UXV, can then easily be computed. The eigenvectors of C are the

23 columns of V. Assume p Ž 1 singular values are non-zero, if Wi

16



i denotes column i of V, then a n x p matrix, W, whose columns

are the non-zero eigenvectors that define the SFPS, is given by

3• W=[WlW2 ... Wp]eR'p. (11)

4 It should be noted that the p x p matrix, WtW, is the identity

5 matrix, 1Px, because the columns of W are orthonormal.

6 It should be apparent to those skilled in the art that there

7 are at most M-1 non-zero eigenvalues of the generalized

8 eigenproblem given in equation (6). The span of the eiqenvectors

9 corresponding to the largest p, 1 < p •! M-l, non-zero

10 eigenvalues is the smoothed Fisher projection space of dimension

11 p, denoted SFPS(p). The rank of the SFPS(p) is exactly p because

12 the eigenvectors spanning SFPS(p) are linearly independent.

13 Although the preferred SFPS(p) is the one resulting from the

14 largest dimension, SFPS(M-I), the Procrustes ordering can be

15 defined for every SFPS(p), for p = 1, 2,... ,(M-l). Thus, the

16 dimension p of the SFPS(p) will be suppressed, and SFPS(p) will

17 be written as SFPS.

18 Having generated the eigenvectors that define the reduced

19 feature space, processor 30 passes the eigenvectors to feature

20 ranking processor 40. When processor 40 receives the

21 eigenvectors, the processor generates a Procrustes angle for each

22 feature in the feature set then ranks the features by increasing

23 numerical size of their Procrustes angles.

17



"ij 1 The cosine of the angle, d, between an arbitrarily specified!

n
21; non-zero vector, x G R , and the SFPS can be defined relative to

3ýý the original coordinate axes or to the coordinate axes defined by!

4 the SFPS. The two methods differ by a linear transformation, ,

5ý where L is the Cholesky factor of the "within-class" scatter

6 matrix, Y-, (recall the forward transform performed in generating

7 the eigenvectors defining the SFPS). Preferably, the angle

8 relative to the SFPS is used because-this angle allows for

9 determining a threshold angle for significant features. A

10 complete description of the determination of a threshold angle is

11 described below in reference to feature reduction processor 70.

12 The Procrustes angles for each feature can be calculated by

13 projecting the features onto the p-dimensional SFPS and measuring

14 the angle between the feature and the projection. To determine

15 the Procrustes angle, the original features axis must be rotated

16 since it was necessary to rotate (forward transform) the

17 eigenvectors, w, to solve the generalized eigenvalue problem

18 given in equation (6). The original features axis can be rotated

19 by multiplying by the Cholesky factor of the within-class scatter

-th
20 matrix defined in equation (7). Let xj be the j feature, that

21 is, xj =f (0,..., 0,1,0 ,...,0) t Rotating the feature axis yields

22 : =LXj (12)

23 where Lt is obtained from the Cholesky decomposition given in

24 equation (7).

18



11 Using a least squares approach, the projection of iý onto

2' the column space, W defining the SFPS is given by

3 projixj W(W W) (13)

4 However, since the matrix, WnxP, is orthogonal, WtW=I, and the

5 projection reduces to

6 proj, vyxj = Vt•ji. (14)

7 The angle between any two vectors, a and b, is given by

atb

8 cost lb (15)

9 Equation (15) can be used to provide the Procrustes angle for the

10: jth feature, xj, if a denotes the feature vector and b denotes the

11 projection of the feature vector onto the SFPS, that is,

12 a (16)

13 and

14 b =WW xj. (17)

15 Using equations (16) and (17) allows the following reductions:

16 I•1 ! (jt]) (18)

17 = ((Ltxj)t(Ltxj))2 (19)

18 = Ltxj2 (20)

19 and

20 b12 =((9(21)

19



X1 (22)

2 (23)

3 Substituting equations (16), (17), (20), and (23) into equation

4 (15) gives the expression for the Procrustes angle, 4j, between

5 the jth feature, xj, and any non-zero vector in the SFPS. This

6 angle, relative to the SFPS, is defined as

7 j = cos-{ -2}' (24)

8 The Procrustes angle, ýj, will be uniquely defined if it is

9 restricted to lie between 0 and 90 degrees, and will be the same

10 angle for all vectors in the subspace spanned by x,.

11 As previously described, the Procrustes ordering of the

12 feature set is defined by ranking the features by increasing

13 numerical size of their Procrustes angles. Procrustes ordering

14 assumes that the SFPS is a good space for feature reduction.

15 Procrustes ordering exploits this property of the SFPS by

16 selecting a subset of the original features that best

17 approximates the SFPS. The Procrustes angle is a measure of

18 linear independence between a feature and the SFPS. If the angle

19 of a particular feature is small (near zero), the feature is

20 nearly in the span of the SFPS; however, if the angle is large

21 (near 90 degrees), the feature is nearly orthogonal to the SFPS.

22 Intuitively, features with small Procrustes angles are good

23 features for classification, whereas, features with large

20



S1 Procrustes angles are poor features for classification. The

21 first feature in the Procrustes ordering, therefore, has the

3 smallest Procrustes angle, and the last feature has the largest

4 angle.

5 Processor 40 generates the Procrustes angle for each feature

6 (•, for j= 1 to n) using equation (24). After generating the

7 Procrustes angle for a feature, the feature and its Procrustes

8 angle are positioned in the Procrustes ranking in accordance with

9 the size of the feature's Procrustes angle.

10 Classification performance evaluator 50 uses the evaluation

11 set built by compiler 20 to evaluate the performance of the

12 classification system under the Procrustes ranking generated by

13 feature ranking processor 40. Classification evaluator 50 can be

14 proqrammed to simulate the classification system. Alternatively,.

15 classification evaluator 50 can be programmed to initiate the

16 classification system and transfer the appropriate feature set

17 and input vectors to the classification system. Any conventional

18 performance evaluation technique can be used. Preferably,

19 evaluator 50 is used to generate a performance curve based on

20 linear combinations of the features ranked by feature ranking

21 processor 40 to determine the subset that provides the best

22 performance. That is, the Procrustes ordering is sequentially

23 tested (i.e., feature rankings (1), (1,2), ... (l,2, .j), ...

24 (l,2,...n)) and the performance (probability of correct

25 classification) is plotted as a function of j, the feature index.

21



i ~i FIG. 3 shows a sample performance plot (probability of

21 correct classification vs. number of features). In FIG. 3, the

3iK classification performance peaks when 23 features are used and

4;i begins to decline when more than 27 features are used; indicating

5 that the reduced feature set should contain between 23 and 27

6 features. This performance evaluation can be used for comparison

7 against other Procrustes orderings or for comparison with the

8 number of features in the Procrustes reduced feature set derived

9 by feature reduction processor 70. Evaluating classification

10 performance is useful if only a small number of trial rankings

11 will be performed. Evaluating classification performance need

12 not be performed for every Procrustes ranking trial produced by

13 feature ranking processor 40, and the evaluator can be omitted

14 entirely if a desired application does not require it.

15 Referring again to FIG. 2, counter 60 determines if another

16 Procrustes ordering, based on a different training set, will be

17 performed. Preferably, multiple Procrustes ordering trials are

18 performed to increase the utility of a small design set by

19 exploiting the variability within the design set. Using multiple

20 trials can reduce the bias and variance associated with

21 performance estimates.'based on a small design set. In choosing

22 the number of ordering trials to perform, consideration should be

23 given to the size of the design set and the processing time

24 available to perform the trials.

25 Counter 60 receives the Procrustes ranking created by

26 processor 40 and stores the ranking in a Procrustes ranking

27 storage unit 62. Storage unit 62 which can be random access

I2



S1 Imemory, a magnetic storage device, or the like is accessible to

2J both counter 60 and feature reduction processor 70. After

3 receiving the Procrustes ranking for processor 40, counter 60

4 increments a trial counter and compares the number of ranking

5 trials performed with a predetermined trials run number that

6 identifies the total number of ranking trials to be performed.

7 If more trials are to be performed, counter 60 supplies a control

8 signal 64 to training/evaluation set compiler 20 to initiate the

9 compilation of another training set .and, if required, an

10 evaluation set. Preferably, the predetermined trials run number

11 is calculated to ensure that a sufficient the number of ranking

12 trials are performed to satisfy a statistical criteria such as

13 confidence or tolerance intervals.

14 Feature reduction processor 70 comprises a feature reducer

15 72 and, optionally, a feature filter 74. Feature reduction

16 processor 70 receives the number of Procrustes ranking trials

17 performed from counter 40. If multiple Procrustes trials were

18 performed, feature reduction processor 70 initiates feature

19 reducer 72. However, if only one Procrustes ranking trial was

20 performed, reduction processor 70 initiates feature filter 74.

21 When multiple Procrustes ranking trials are performed,

22 feature ranking processor generates a separate Procrustes feature

23 ranking for each trial. These feature rankings may vary from

24 trial to trial. Feature reducer 72 reconciles the multiple

25 trials and generates the Procrustes reduced feature set. The

26 across-trial feature ordering is based on the assumption that the

27 number of times a particular feature is highly ranked is an

* I 23
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. 1indication of the relative importance. Feature reducer 72

21 generates the Procrustes reduced feature set by first combining

3 the multiple Procrustes rankings produced by feature ranking

4 processor 40 and then identifying the features that are

5 consistently highly ranked across the multiple trials.

6 Feature reducer 72 combines the ranking of features across

7 multiple trials by counting the number of times each feature is

8 ranked in the top m positions; where M=l,2,...,n (number of

9 features). That is, for ni=l, feature processor 72 builds a

10 ranking count which indicates a ranking count number for each

11 feature. For rn=1 the ranking count number equals the number of

12 times the feature was ranked first. For rn=2, feature reducer 72

13 builds a ranking count in which the ranking count number for eachi

14 feature indicates the number of times the respective feature was

15 ranked first or second. Feature reducer 72 continues to build

16 these ranking counts until m=n (that is n individual ranking

17 counts are built). Referring to FIG. 4A, there is shown a

18 graphical representation of a ranking count for ni=25 calculated

19 from 100 Procrustes ranking trials of a feature set having 70

20 features. As can be-seen in FIG. 4A, eight features (features 1,

21 3, 6-8, 23, 26, and 28) were ranked in the top 25 positions in

22 each of the 100 trials while 56 features were ranked in the top

23 25 at least once.

24 The features that are consistently highly ranked are of most

25 importance for classification Feature reducer 72 identifies the

24



1r1 features which are consistently highly ranked by constructing a

2j! thresholded version of each ranking count built. A thresholded

311 ranking count is constructed by varying a threshold, T, between 0

4 and the total number of trials and, for each threshold value,

5 counting the number of features whose ranking count number

6 exceeds the threshold. FIG. 4B shows the thresholded ranking

7 count for the ranking count of FIG. 4A. As can be seen in FIG.

8 4B, at T=1, the thresholded ranking count indicates that 56

9 features were ranked in the top 25 at least once, while at T=100,

10 the thresholded ranking count indicates that only eight features

11 were ranked in the top 25 for all 100 trials.

12 After calculating the thresholded ranking counts, feature

13 reducer 72 separates the features which are consistently highly

14 ranked from those which are only occasionally ranked by examining'

15 each thresholded ranking count to determine the longest series of

16 threshold values over which the number of features whose ranking

17 count numbers exceed the threshold values remains constant. This

18 series is illustrated in FIG. 4B by the flat portion of the

19 curve, identified as 40, over a wide range of threshold values

20 (between 40 and 68). Portion 40 of the thresholded ranking curve

21 separates the features consistently highly ranked (feature with a

22 ranking count over 68) from those that are not consistently

23 ranked (ranking count less than 40). It should be noted that it

24 is not a threshold value (40 or 68 in FIG. 4B) that determines

25 whether a feature is considered to be consistently ranked.

26 i Rather, it is the flat portion 40 of the curve, which occurs for

27 the same number of features, but over different threshold values,

25



"li in the other thresholded ranking counts, that indicates the

2i breakpoint between features. This breakpoint defines the

3 features that are important for classification.

4 The breakpoint identifies a constant number of features

5 whose ranking count number exceeds the threshold value (referred

6 to as the Procrustes number). The Procrustes number indicates

7 the size of the reduced feature set. The features comprising the

8 reduced feature set can be easily identified from the ranking

9 count. For example, the Procrustes number for the thresholded

10 ranking count shown in FIG. 4B is 23. The 23 features that

11 comprise the reduced feature set can easily be identified from

12 the ranking count (FIG. 4A) as the 23 features having the highest

13 ranking count numbers. It should be noted that the Procrustes

14 number may vary from one thresholded ranking count to another.

15 Thus, the Procrustes number that occurs consistently over a

16 number of thresholded ranking counts is used to identify the

17 number of features in the Procrustes reduced feature set.

18 When multiple trials have not been performed, feature filter

19 74 generates the Procrustes reduced feature set by eliminating

20 those features having a Procrustes angle greater than a threshold

21 angle. A threshold angle is determined by applying a statistical

22 significance test under an appropriate null hypothesis. To

23 formulate an appropriate null hypothesis, a model for the feature

24 generation process is defined. The model assumes the feature set

25 is comprised of two subsets; a knowledge-based set and an

26 intuition-based set. The knowledge-based set is defined as those

27 features that are derived from known measurable class

26



i differences, whereas the intuition based set is comprised of

2 features which are believed to define class differences. For

3 most complex classification problems, the size of the knowledge-

4 based set is small compared to the size of the intuition-based

5 set; therefore, the underlying null hypothesis should be

6 dominated by the intuition based set. Because Procrustes

7 ordering is independent of vector length, the model adopted is

8 that the feature set vectors are uniformly randomly distributed

9 on the unit sphere in Rn. With this-model, the feature selection

10 process becomes the process of determining the subset of these

11 "randomly" generated features that "happen" to best approximate

12 the SFPS. If these assumptions regarding the feature set are

13 accurate, thresholding the upper tail of the resulting PDF will

14 enumerate those features that are poor for classification.

15 Let P1 ,(F) denote the PDF of the Procrustes angle, ý, between

16 a fixed p dimensional subspace of Rn and a uniformly distributed

17 random variable on the unit sphere in Rn. It can be shown that

18 the random variable t = cos2 is beta distributed, with

19 praeer nd (n-p)

19 parameters 2 and 2 ' so that after a change of variables Pp(M)

20 is given explicitly by

21 2F() sp- 1 4 sinn-p-l1 (25)2Pn,p( = )r(-- n-p)
"F2" 2

22 where 0 n • • 7/2 and F(.) represents the Gamma function.

23 Therefore, under a Procrustes ordering method, the angle of a

27



ij feature is significant at the (% significance level if it lies

2 on the upper cc% tail of P~p().

3 Feature filter 74 eliminates those features having a

4 Procrustes angle greater than a predetermined threshold wherein

5 the threshold is chosen to provide a predetermined significance

6 level (decision confidence) in accordance with equation (25).

7 The remaining features comprise the Procrustes reduced feature

8 set.

9 In addition to single trialsi feature filter 74 is-useful

10 for creating a reduced feature set when a small number of trials

11 have been run. Additionally, filter 74 may be used for

12 comparison against the reduced feature set generated by feature

13 reducer 74 or against the 'reduced feature set suggested by

14 performance evaluator 50.

15 What has thus been described is a system and method for

16 ranking features and reducing the number of features used in a

17 real-time feature based classification system. The present

18 invention provides a novel approach for ranking features in order

19 of importance and for reducing the size of a feature set and

20 offers several significant advantages over the prior art. First,

21 Procrustes ordering is fast and computationally simple enabling

22 its use for real-time, in situ applications. Second, it provides

23 geometric insight into the problem of feature selection while

24 maintaining the original interpretation of the given features.

25 Obviously many modifications and variations of the present

26 invention may become apparent in light of the above teachings.
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,ij For example, various feature space reduction techniques

2.J including, but not limited to, principal component analysis or

3:I factor analysis can be used to generate the reduced feature

4 space. The features can then be linearly ranked and reduced

5 based on the angle between the feature and the reduced feature

6 set. Similarly, other statistical models and analysis methods

7 may be used to combine the individual trial rankings into the

8 single across-trial reduced feature set generated by feature

9 reducer 72.

10 The elements in the embodiment of the system shown in FIG. 2

11 can be implemented using a combination of computer-readable

12 memory (e.g., EPROM) and combinatorial logic to rank features

13 and/or generate a reduced feature set. Alternatively, the system

14 can comprise software modules of a digital processing program

15 stored in computer-readable memory under control of a digital

16 processor that can be used to direct the processor to generate a

17 reduced feature set and/or rank feature.

18 In light of the above, it is therefore understood that

19 the invention may be

20 practiced otherwise than as specifically described.
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'1 Navy Case No. 76580

2

3 SYSTEM AND METHOD FOR FEATURE SET REDUCTION

4

5 ABSTRACT OF THE DISCLOSURE

6 A system and method for ranking features by exploiting their

7 relationship to the Fisher projection space. The system ranks n

8 features in a feature set using a design set comprising exemplars

9 from each of M possible event classes of an associated feature-

10 based classification system. A training set is created by

11 randomly selecting exemplars from each of the M classes in the

12 design set. A ''smoothed'' Fisher projection space for the

13 1 training set is created by replacing the sample means and the

14 within-class sample covariance matrix normally used in deriving a

15 Fisher projection space with expressions for the mean vectors and

16 covariance matrices derived from event class probability density

17 function estimates. The angle between a given feature and the

18 smoothed Fisher projection space is calculated for each feature

19 in the feature set, and the features are then ordered by

20 increasing numerical size of this angle. The system produces a

21 reduced feature set by eliminating those features which are not

22 important for classification based on the linear ranking of the

23 features.
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